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Collision of two vortex rings 
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The interaction of two identical circular viscous vortex rings starting in a side-by- 
side configuration is investigated by solving the Navier-Stokes equation using a 
spectral method with 643 grid points. This study covers initial Reynolds numbers 
(ratio of circulation to viscosity) up to 1153. The vortices undergo two successive 
reconnections, fusion and jhsion, as has been visualized experimentally, but the 
simulation shows topological details not observed in experiments. The shapes of the 
evolving vortex rings are different for different initial conditions, but the mechanism 
of the reconnection is explained by bridging (Melander & Hussain 1988) except that 
the bridges are created on the front of the dipole close to the position of the 
maximum strain rate. Spatial structures of various field quantities are compared. It 
is found that domains of high energy dissipation and high enstrophy production 
overlap, and that they are highly localized in space compared with the regions of 
concentrated vorticity. The kinetic energy decays according to the same power laws 
as found in fully developed turbulence, consistent with concentrated regions of 
energy dissipation. The main vortex cores survive for a relatively long time. On the 
other hand, the helicity density which is higher in roots of bridges and threads (or 
legs) changes rapidly in time. The high-helicity-density and high-energy-dissipation 
regions overlap significantly although their peaks do not always do so. Thus a long- 
lived structure may carry high-vorticity rather than necessarily high-helicity 
density. It is shown that the time evolution of concentration of a passive scalar is 
quite different from that of the vorticity field, confirming our longstanding warning 
against relying too heavily on flow visualization in laboratory experiments for 
studying vortex dynamics and coherent structures. 

1. Introduction 
Vorticity dynamics is one of the most fundamental means of understanding fluid 

motion, especially at high Reynolds number and in turbulent flows. For an 
incompressible flow, the velocity and vorticity fields contain almost equivalent 
information. Although vorticity is more difficult to measure in experiments, 
particularly in three-dimensional turbulent flows, there are several reasons why the 
vorticity field is a more fundamental quantity. 

First, in high-Reynolds-number flows, high-vorticity regions are more localized in 
space than velocity. Vorticity, unlike velocity, is Galilean invariant. A velocity field 
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induced by vorticity in an incompressible flow is obtainable from the Biot-Savart 
induction equation. Thus it is easier to understand fluid phenomena and t,o build a 
model for them, if necessary, in terms of vorticity than velocity. The vortex method, 
which is one of the most powerful numerical schemes to solve high-Reynolds-number 
flows, is based upon an idealization of concentrated vorticity regions (Leonard 1980 ; 
Chorin 1982; Shirayama & Kuwahara 1984). 

Second, turbulent motion is more clearly evident in the vorticity field than in the 
velocity field. The large-scale organized structures, the so-called coherent structures, 
which persist for relatively long times in turbulent flows, are characterized by 
domains of coherent vorticity and their interactions and evolution can be explained 
in terms of vortex dynamics (Hussain 1983). 

Third, in comparison with the large-scale organized structures, splintered regions 
of high vorticity, which mostly form bundles, are the source of intermittency in 
turbulence. The probability distributions of velocity derivatives and vorticity have 
exponential tails which decay much slower than the Gaussian distribution - a 
characteristics of the intermittency of turbulence (Kida & Murakami 1989). 

Fourth, the topological structure of vortex lines is closely related to helicity (the 
spatial integral of the inner product of velocity and vorticity u - w )  and super-helicity 
density w - x ,  where x = V x w is the di-vorticity (Kida 1985). In an inviscid flow 
which is composed of closed vortex lines, the total amount of knottedness or 
entanglement and circulation of vortex lines determine the helicity, which is one of 
constants of motion for inviscid flows (Moffatt 1969). The Kelvin-Helmholtz 
theorem states that vortex reconnection is inhibited in the inviscid case. Both 
topology and circulation of vortex lines do not change in time, and so is the case with 
helicity. In a viscous fluid, on the other hand, helicity may increase or decrease 
depending on the structure of the flow field or, more precisely, in proportion to 
viscosity and the negative of super-helicity (see (7.5)). The existence of viscosity is 
a necessary condition for vortex reconnection (see Kida & Takaoka 1991). It should 
be mentioned here that vortex reconnection does not always cause helicity to change. 
For example, in a collision of two vortex rings, which will be considered in this paper, 
helicity is zero at  all times and reconnection is not accompanied with helicity change. 
A reconnection in a trefoiled vortex (Kida & Takaoka 1987,1988), on the other hand, 
results in a helicity change. The invariance of helicity in the inviscid limit is not 
obvious since the super-helicity may blow up in this limit. A similar problem remains 
unsolved for the energy dissipation in the inviscid limit (e.g. Kida 1983). There is a 
numerical suggestion that the helicity may be invariant in the inviscid limit (Kida 
& Takaoka 1988)) but more extensive simulations and analyses are necessary to solve 
this subtle problem. This limiting property of the change in time of helicity has some 
relevance to the theory of turbulence. The so-called helicity-cascade theory is based 
upon the existence of finite helicity transfer to the small-scale motions in the inviscid 
limit (Brissaud et al. 1973). 

Fifth, the singularity of the solution of the NavierStokes equation or Euler 
equation is directly related to the vorticity field. The formation of a singularity must 
be accompanied by a blow-up of the vorticity field (Beale, Kato & Majda 1984). The 
verification of a finite time singularity has been tried extensively by the direct 
numerical simulation of the Navier-Stokes and Euler equations (Siggia & Pumir 
1985; Kerr & Hussain 1989), but it is still hard to obtain a conclusive result for the 
existence of a singularity by numerical simulation because it requires very high 
resolution and very long time integration. 

The interaction between vortex tubes which are moving in an irrotational 
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surrounding flow has been studied extensively by many researchers both ex- 
perimentally and numerically. Among other configurations the motion and the 
interaction of two circular vortex rings are expected to exhibit the mechanism of the 
vortex reconnection processes in the simplest way. In  fact, visualizations by dye and 
smoke as well as measurement of vorticity have revealed the nature of vortex 
interactions (Fohl & Turner 1975; Oshima & Asaka 1977; Schatzle 1987; Oshima & 
Izutsu 1988). In  the experiments, two circular vortex rings which are ejected side by 
side from nozzles undergo two successive reconnections. (Note, however, that what 
is observed in the experiments is not vorticity but a passive scalar (see $6).) The two 
rings merge into a single distorted ring in the first reconnection. This ring then splits 
in the second reconnection into two rings in a direction perpendicular to the initial 
rings. In Schatzle’s experiments, an averaged vorticity field was obtained by taking 
an ensemble average over many realizations. Since successive realizations do not 
necessarily exactly repeat, the inherent jitter is bound to introduce substantial 
smoothing of the averaged vorticity field. Owing to technical limitations it is hard to 
measure vorticity with high accuracy. Moreover, the data analysis is limited only to 
several planes while three-dimensional data on the flow field are necessary to 
understand the mechanism of vortex reconnection. A drastic improvement of the 
measuring technique is highly desirable. 

Numerically, a number of studies of the vortex reconnection problem have been 
attempted for various configurations of vortex tubes : for example, the vortex stick 
method (Leonard 1974; Anderson & Greengard 1988), the vortex filament method 
(Siggia 1985; Schwarz 1985; Siggia & Pumir 1985), contour dynamics (Shariff et al. 
1988), the spectral method (Kida 6 Takaoka 1987,1988; Melander & Zabusky 1988; 
Melander & Hussain 1988; Kida, Takaoka & Hussain 1989; Kerr & Hussain 1989) 
and the finite-difference scheme (Chamberlain & Liu 1985). The occurrence of vortex 
reconnection is obvious ih these simulations, but the detailed mechanism of the 
reconnection processes has not been fully understood and varies considerably among 
these studies. 

A simple and naive explanation of the mechanism of the reconnection process of 
a pair of nearly anti-parallel vortex tubes may be a simple cancellation of vorticity 
of opposite sign (figure 1).  A continuous squashing of a vortex pair by a converging 
flow induced by either the rest of the vortex tubes or an external flow is a necessary 
condition for the cancellation to be completed. The interacting pair itself does not 
induce a strong enough colliding velocity for completion of the cancellation because 
it is weakened during the reconnection process ($3.3). As will be shown later, the 
configuration in the reconnection process would not remain two-dimensional, but the 
curved vortex tubes inevitably induce motion in the third direction, which makes 
the phenomenon complicated. It is expected, however, that a t  the beginning 
of the reconnection, vortex lines have an X-structure such as illustrated in 
figure 1. 

Another mechanism which was observed by a numerical simulation is the 
‘bridging’ studied by Kida & Takaoka (1987, 1988), in which a strong-vorticity blob 
bursts out of other than the closest point of interacting parts of a trefoiled vortex 
ring. The mechanism of this bursting, however, has not been fully understood yet. 
Another phenomenon, called jingering, was observed in a simulation of two 
orthogonal straight vortex tubes (Melander & Zabusky 1988). More recently, 
Melander & Hussain (1988, this paper will be cited as MH in the following) made a 
numerical simulation of a pair of anti-parallel sinusoidally perturbed vortex tubes 
and discovered a new mechanism of vortex reconnection, also called ‘bridging’ by 
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FIGURE 1. Cartoon of vortex reconnection by a simple cancellation of opposite-signed vortex lines. 
Double arrows indicate directions of vorticity and big arrows a converging flow around the 
interaction zone. 

them, which was proposed as a different mechanism from that noted by Kida & 
Takaoka. 

As stated before, the study of two vortex rings was initiated by laboratory 
experiments using dye or smoke as tracers. Observations of many interesting 
phenomena such as the cross-linking of vortex tubes, the wave formation on a vortex 
ring and the repetition of overtaking of two vortex rings stimulated subsequent 
analytical and numerical studies of the motion of vortex tubes of various shapes. It 
should be noted, however, that the spatial pattern of concentration of passive scalars 
such as dye and smoke does not represent faithfully the motion of vorticity 
magnitude (Hussain 1983). This claim stems from the completely opposite effects of 
stretching of fluid elements on the intensity of vorticity and on the concentration of 
a scalar quantity; i.e. a stretching intensifies the strength of vorticity but diminishes 
the concentration of a passive scalar. 

In this paper we deal with the interaction of two circular vortex rings which start 
with a side-by-side configuration, as in the experiments cited above. The motion of 
the vortex rings is followed by solving the Navier-Stokes equation numerically. The 
periodic boundary condition is imposed. The calculation employs a spectral method 
with 643 collocation points. The primary goals of this study are to (i) simulate 
numerically two successive vortex reconnections which were visualized in laboratory 
experiments, but have not yet been realized in a numerical simulation, (ii) reveal the 
detailed mechanism of the vortex reconnection process by analysing three- 
dimensional fields of various properties, (iii) examine the dependence of the 
reconnection process on the initial condition (inclination angle) as well as on 
viscosity, (iv) compare the spatial structure of enstrophy, energy-dissipation, 
enstrophy production and helicity densities, in order to establish a possible relation 
of coherent structures with these quantities, and (v) discuss the similarity and 
differences in the evolutions of vorticity and passive scalar fields. A preliminary part 
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of the present study has been already reported (Kida et al. 1989), in which we showed 
qualitative aspects of the vortex interaction. 

This paper is organized as follows. The numerical scheme and the initial set-up of 
the vortex tubes are explained in $2. We made several runs with different initial 
inclination angles and different viscosities. We take a single run in $3 to describe 
various phases of the interaction as well as the formation of a head-tail structure 
followed by the first and second reconnections. The mechanism of bridging is 
explained in some detail. In $4, we compare several runs with different initial 
conditions. The decay laws of energy and enstrophy are examined in $5, and are 
found to obey the same power laws as observed in turbulent flows. The transport 
property of a passive scalar advected by the vortex motion is examined in $6. The 
limitations of a passive scalar in marking high-vorticity regions is discussed. The 
relation between helicities and skewed structures of the flow field is studied in $7.  
Finally, $8 is devoted to our concluding remarks. 

2. Numerical scheme and initial condition 
We trace the motion of two vortex rings by solving the Navier-Stokes equation 

- + o x u = - v  -+- +vv2u, 
au 
at t Y 2 )  

or the vorticity equation 

am -+(u.V)o = (o.V)u+vV2o, 
at 

together with the continuity equation 

v - u  = 0, (2.3) 

where o = v x u  (2.4) 

is the vorticity and v is the kinematic viscosity. 
The velocity field is assumed to be periodic with a period 2n in all the three 

orthogonal directions. We consider the motion of vortex rings in a cyclic cube of side 
27c. For convenience of description, we define the Cartesian coordinate system (x,, x2 ,  
x3) as shown in figure 2. The origin is located at  the centre of the box, and the xl- and 
the x2-axes are on diagonal planes. That is, ( x 2 ,  x,) and (x,, 5,) are diagonitl planes, 
while (xl, x 2 )  is a mid-plane parallel to opposite faces of the cube. 

Initially, two identical circular vortex rings are set up as shown in figure 3. The 
centres of the vortex rings are on the z,-axis. The distance between the centres of the 
two rings is D .  The radius of the circular vortex rings is R and the core radius is a. 
The vortex rings are inclined by an angle 8 towards the x,-axis. Thus, the velocity 
field is symmetric with respect to the ( x 2 , x 3 ) -  and the (x3,xl)-planes. These 
symmetries are preserved during the entire period in the simulation though we do not 
impose them in our numerical code. We start with two vortex rings along a diagonal 
of the computational box in order to maximize resolution. We use a Gaussian 
vorticity distribution in the core : 
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FIGURE 2. A periodic box and the Cartesian coordinate system. 

X Z  

FIGURE 3. Initial vortex tubes: (a) top view; ( b )  side view. 
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e 
Case R a oo (deg.) D I ( 0 )  1 ( 0 )  v r rlv At t, 

I 0.982 0.393 23.8 0 3.65 0.500 3.42 0.01 11.53 1153 0.02* 13 
I1 0.491 0.196 23.8 0 1.83 0.0168 0.428 0.005 2.88 577 0.05 30 

I11 0.491 0.196 23.8 15 1.83 0.0168 0.428 0.005 2.88 577 0.057 45 
IV 0.491 0.196 23.8 30 1.83 0.0168 0.428 0.005 2.88 577 0.051 60 

V 0.491 0.196 23.8 45 1.83 0.0168 0.428 0.005 2.88 577 0.05t 45 

TABLE 1.  Parameters used in different runs (* 0.025 for 5 Q t Q 13, t 0.1 for 15 < t 45, 1 0.2 
for 30 Q t Q 60) 

Here r is the distance from the core centreline, w, is the maximum vorticity at the 
core centre and a is the e-'-fold radius of the core. The circulation of the vortex ring 

r= 2x rw(r)dr Som 
is nwoa2. The turnover time during which a fluid particle at a distance a from the 
centre of the ring goes around the centre once is about 6.3n/w0, which is 0.83 for 
w, = 23.8 (see table 1). The tail of the core of the vortex rings is terminated at 0 . 0 1 ~ ~  
(which is at 2 . 1 4 ~  from the centreline). This ensures that the vorticity of the two 
vortex rings does not overlap at  the initial instant. The vorticity field is then 
adjusted to be exactly divergence-free by orthogonalizing the Fourier components of 
the vorticity field with wavenumber. Of course, by symmetry, the computation 
domain is circulation-free and remains so for the entire computation time. 

Several runs of different orientations of vortex rings and different values of 
viscosity have been made. The relevant parameters, listed in table 1, include the 
kinetic energy (in a frame moving with the mean velocity u, which is averaged over 
periodic cube and is constant in time), 

and the enstrophy, 

The initial vortex rings for Cases I and I1 have the same shape and orientation but 
the size of the two rings and the distance between them are different by a factor of 
2. If we neglect the effects from other periodic boxes, we can scale the initial vortex 
rings for Case I by a change of variables, 

1+2-11, u+2-1u, w+w,  t + t ,  v+2-4v, (2.9) 

1 being the lengthscale, so that it may coincide with Case 11. Thus, Case I may be 
compared with Case I1 by reducing the viscosity to 0.0025. By transformation of 
variables (2.9), the energy and enstrophy are converted as 

8 N p U 2  + 2 - 5 ~ ~ 2  N 2-54  9 N 13@2 --f 2-3~3~2 N 2-39. (2.10) 

As seen in table 1, these correspondences are satisfied very well for the enstrophy but 
not well for the energy. This is because the energy is not as localized as the enstrophy, 
and the effects from the adjacent boxes cannot be neglected for the energy. Cases 
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II-V are simulations of the same initial vortex rings with the same distance between 
the centres and the same viscosity but with different inclined angles, 6 = 0", 15O, 30" 
and 45". We examine the initial-condition dependence by comparing these four 
runs. The radii 0.982, 0.491, 0.393 and 0.196 cover 10, 5, 4 and 2 mesh points, 
respectively. The ha1  time of the calculation t, is shown in the last column of 
table 1. 

The parameters listed in table 1 were chosen carefully after an extensive check of 
numerical accuracy by comparing various runs with different resolutions and 
viscosities. We made a larger ( 128,) simulation with exactly the same initial 
condition as Case I and found no visible difference from the vortex contours shown 
in figure 5 below from the present 64, run. 

We solved the vorticity equation (2.2) by a spectral method on P (= 64,) grid 
points. The aliasing interactions are eliminated by a shifted Fourier transformation 
and the truncation of the Fourier components outside an octadecahedron in the 
wavenumber space, which is defined by Ikjf k,l = ZN, j, k = 1,2,3,  j += k, and lk,l = 
+N, j = 1 ,2 ,3  (Orszag 1971). In this method the Fourier components of wavenumber 
magnitude at  least .\/2/3 N are retained in all directions in the wavenumber space. 
Time marching is done by the Runge-Kutta-Gill scheme with the time increment At 
shown in table 1. 

3. Interaction of vortex tubes 
3.1. Overview 

The evolution of the two vortex rings is conveniently represented by iso-surfaces of 
vorticity norm IwI. They are plotted in figures 4 ( a ) 4 ( d )  a t  several representative 
stages of evolution for Case I, seen from the (2,1,5)-,  ( O , O ,  1)-, ( l , O , O ) -  and (0, -1,  
0)-directions, respectively. The levels of the iso-surfaces are 25 % of the instantaneous 
maximum of the vorticity norm lmlmax (see figure 18a below). Remember that these 
surfaces are not vorticity surfaces. Where vorticity is higher, the iso-surface of the 
vorticity norm produces a larger object than that of the vorticity surface. Vorticity 
lines may cross the iso-surfaces of the vorticity norm. 

Self-induction causes the two vortex rings to travel in the x,-direction and mutual 
induction causes them to turn toward the (x,,x,)-plane. These together make them 
approach each other and they collide on the (x,, x,)-plane at around t = 3 (figure 
4a-d(ii)). The vortices are anti-parallel at the contact point and vortex lines of 
opposite directions are cancelled by viscous cross-diffusion, and at  the same time 
vortex lines in the main tubes are connected to create a single big distorted ring. (A 
detailed explanation of the reconnection mechanism will be given in the following 
subsections.) This cancellation cannot be completed and the uncancelled part, which 
is called the thread (MH), is left on the front of the vortex tube (figure ia-d(v)).  
Meanwhile the curvature-induced motion distorts the ring. Thereafter, these threads 
swirl around the main tubes because of the velocity induced by the latter, while being 
diffused by viscosity (figure 4a-d (vi, vii)). The decay process is not straightforward 
because the threads, being anti-parallel to and much weaker than the main vortex 
tube, undergo cancellation with the main vortex tube by viscous cross-diffusion. 
Thus virtually a single ring (figure 4b(vii)) emerges out of the initial two. 

The main distorted ring moves further along the 2,-direction. The velocity induced 
by its own vorticity distribution causes a stretching of the tube in the x,-direction 
and a shrinking in the x,-direction (figure 4b(v-vii)). It takes a gourd-shaped form 
around t = 7 (figure 4a(vii)). The curvature at the two round ends of the tube 
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FIQURE 4(c). For caption see next page. 
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FIGURE 4. Perspective views ofiso-surfaces of the vorticity norm, seen from directions (a) (2 ,1 ,5) ,  
( b )  (O,O, l ) ,  (c) (1,0,0) and (d) (0, - 1 , O )  for Case I. ( i )  t = 0, (ii) 3, (iii) 3.5, (iv) 4, (v) 5, (vi) 6, (vii) 
7,  (viii) 9, (ix), 10, (x) 11 .  The surface level of 25% of ~~~,,,,,x is drawn. 
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becomes larger and therefore induces a higher velocity there, making these parts 
travel faster. This makes the distorted ring somewhat planar (figure 4ad(vii i)) .  The 
neck of the gourd shape of the vortex, on the other hand, becomes narrower and 
narrower, and the facing parts of the ring contact at  around t = 9 (figure 4u-d(viii)), 
triggering the second reconnection. Two humps appear in front of the vortex tube 
(figure 4ad( ix) ) .  At  each end of the contact line, the facing parts of the tube are 
linked by bridges to create two circular rings. Again the cancellation of opposite- 
signed vorticity is not complete and two remnant vortex tubes called legs (Kida et al. 
1989) are left behind the bridges. (A thread and a leg seem to be left by a similar 
mechanism though they are different in appearance.) The vortex ring at t = 11 
resembles eyeglasses with a frame and nose-pieces (figure 4 a 4  (x)). The mechanism 
of these vortex reconnections will be described in more detail in the following 
subsections. 

3.2. First reconnection 

Figure 5 shows the time development of contours of -02 on the symmetric (xl, 2,)- 

plane. The contour levels drawn here are 5, 10, 20, 40 and 80% of 1 ~ ~ 1 ~ ~ ~ .  The solid 
and broken lines represent positive and negative values of -02, respectively. That is, 
the vortex cores shown by solid lines rotate counterclockwise and those by broken 
lines clockwise. 

The initial circular cores of the vortex tubes are stretched in the x,-direction and 
form a tadpole-shape (figure 5 b ,  c). The mutual induction between the heads, which 
contains far more circulation than the tail, is much stronger than that bet.ween the 
tails. As a result, the heads move ahead leaving the tails behind. The peak of 
vorticity in each core is shifted relatively away from the axis of each vortex ring 
(figure 5 b d ) .  This shift of the peaks can be understood qualitatively by considering 
the conservation of fluid volume in a cross-section of a vortex core with curvature. 

The outer cores travel upward faster than the inner cores because the two inner 
cores are pushed against each other forming a dipole and pulling each other 
downward by mutual induction. The outer cores ahead of the inner cores induce, at 
the position of the inner cores, a flow which is converging toward the (z2, z,)-plane (the 
dividing line in figure 5 ) .  As a result, the inner cores are further pressed against each 
other to make a flat dipole. The magnitude of the converging flow due to the outer 
cores decreases with decreasing x1 and vanishes on the (x,,z,)-plane. Thus, the 
vorticity is accumulated and steepened in the 2,-direction near the (z2, 2,)-plane. The 
dipole would propel itself downward in the absence of any external flow. In  the 
present case, it is advected upward by a strong flow induced by the rest of the vortex 
tubes. 

The so-called head-tail structure of a dipole, which has peaks of vorticity at the 
front of the dipole (downward in figure 5f and upward in figure 51-p) and long tails 
at  the back, is clearly seen at  t = 3.5 and 8.5-13. This structure has been observed 
in other configurations such as a head-on collision of two circular vortex rings 
(Stanaway, Shariff & Hussain 1988), a perturbed anti-parallel vortex pair (MH) and 
a disturbed Batchelor’s dipole (Pumir & Kerr 1987). The head-tail structure was also 
observed in an inviscid calculation of a head-on collision of two vortex rings (Shariff 
et al. 1988). A common observation in the formation of the head-tail structure is that 
heads are created at  the front of a dipole which is convex in the travelling direction 
so that the two elements of the dipole tend to approach each other through their self- 
induction velocity. The formation of the head-tail structure in a dipole through the 
self-approaching flow will be reported elsewhere (Kida, Takaoka & Hussain 1991). A 
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FIGURE 5(a-k) .  For caption see facing page. 

close relation between the head-tail structure and the spatial distribution of strain 
rate will be discussed in 33.3. 

Incidentally, a wavy structure in the vortex cores of the dipole, which is symmetric 
with respect to the (x2, x,)-plane (figure 5g ,  o ) ,  seems to be due to an instability. The 
characteristics of this instability, such as the symmetry and the lengthscale, are 
understood qualitatively in terms of the instability of a triangular jet, in which the 
dipole is replaced by two vortex layers of finite width with uniform vorticity of the 
same magnitude and opposite sign, and the stability characteristics are known 



Collision of two vortex rings 597 

100 

80 

I00 

80 

- 20 0 20 
X1 

FIQURE 5. Cross-section of vorticity component -u2 on the (zl,z,)-plane for Case I. (a) t = 0, (b)  
0.5, (c) 1, (4 2, (4 3, (f) 3.5, (8) 4, (h)  5, (i) 6, 0) 7, (4 7.5, (0 8.5, (m)  9, (n) 10, (0 )  11, b) 13. Solid 
and broken lines represent positive and negative values, respectively. Levels plotted are 5, 10, 20, 
40 and 80% of ~cu~max. Numbers on the axes are the coordinates measured in terms of mesh size. 

- 

analytically (see Drazin & Reid 1981, p. 246). A symmetric (with respect to the 
centreline of the triangular jet) disturbance is linearly unstable in the inviecid case. 

The flow converging toward the centreplane keeps the two rings of the dipole 
together. The opposite-signed vorticity across the symmetry plane is being cancelled 
on the plane by viscous cross-diffusion. These vortex lines that are cancelled out by 
diffusion should be connected with the corresponding vortex lines in the other vortex 
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FIGURE 6. Cross-section of vorticity component w1 on the (z2, z,)-plane for Case I. (a) t = 3.5, ( b )  
4, (c) 5, (d )  6, (e) 7, (f)  7.5, (9)  8.5, (h) 9, (i) 10, 0) 11, (k) 13. Solid and broken lines represent positive 
and negative values, respectively. Levels plotted are 5, 10, 20, 40 and 80% of lmImax. 

tubes, for vortex lines cannot be terminated inside the flow since the vorticity field 
is solenoidal. Therefore, an 2,-component of circulation appears on the (x2, x,)-plane, 
which exactly equals the amount of the qcomponent which is lost in the (x , , z3 ) -  
plane by viscous cross-diffusion. The cancellation of vorticity is incomplete, and the 
uncancelled parts of vorticity, or threads, swirl around the outer cores as a result of 
the induction by the latter (see figures 4ati(v-vii) and 5h-I). The intensity of the 
threads is being weakened by viscous cross-diffusion between the threads and the 
main cores. Meanwhile, the outer cores approach each other, which initiates the 
second reconnection ($3.4). 

The time sequence of the contours of w1 on the (z,,x,)-plane, resulting from 
bridging ($3.3), is drawn in figure 6. The solid and broken lines represent positive and 
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FIQURE 7. Time-development of circulation around interacting vortex tubes during the first 
reconnection for Case I. -, Circulation around the cross-section of an inner core on the (xl, x3)- 
plane; - - ~  , circulation around the cross-section of a bridge on the (x2, x&plane ; the 
sum of the two circulations. 

negative values of wl, respectively. Again contours are shown for wl-values of 5 ,  10, 
20, 40 and 80 Y of and lwll is less than 5 YO until t = 3. The two small islands 
in figure 6(a)  are the cross-sections of the newly born bridges. The location and the 
direction of the initial appearance of the bridges will be discussed in 93.3 in regard 
to the maximum stretching rate and the stagnation point. The rapid increase of the 
distance between the two islands results from the approach of the round parts of the 
main tube which have larger radii. Note that during the formation of bridges their 
cross-section is not smooth nor well-defined because of continual accumulation of 
new reconnected vortex lines and their advection around the bridge core (MH). 
Bridging is nearly complete at  t = 5 ,  whence the vortex cross-section takes a tadpole 
shape with the head downward. This form of core cross-section persists during the 
rest of the simulation. At  t = 8.5, the second reconnection starts. 

The time development of circulation around the cross-section of one of the inner 
vortex cores in the (xl,x,)-plane is plotted by a solid line in figure 7. A broken line 
represents the circulation around the cross-section of a newly born vortex core, or a 
bridge, on the (z,,z,)-plane (see figure 6 a ) ,  and a dash-dot line the sum of the two 
circulations. These circulations were calculated by summing the vorticity component, 
o1 or w,, on the grid points belonging to the vortex core concerned. The z,-component 
of circulation decreases slowly at early times ( t  5 2 ) ,  because of the interaction of the 
edges of the cores which are fattened by viscous diffusion. Around t = 2.5, just when 
the first reconnection occurs, the circulation begins to decay appreciably and loses 
80 YO of its initial value by t = 4.5. At the same time, the 2,-component of circulation 
appears and increases rapidly. During the reconnection, say 2.5 5 t ;5 4.5, 70% of 
the initial circulation is lost, but the sum of the xl- and x,-components remains 
almost constant in time. The decrease in the sum results from viscous cross-diffusion 
between the threads and the main vortex tubes as well as between the vortex tubes 
on the (q, z3)- and (x2, 2,)-planes. For t 2 4.5, the z,-component decays rather 
gradually. 

There may be three phases of evolution of two interacting vortex rings, just as 
observed earlier by MH in two interacting anti-parallel sinusoidal vortex tubes. They 
are (i) the inviscid advection phase in which anti-parallel parts of vortex tubes 
approach each other by self- and mutual inductions, and the vortex lines are 
stretched and the cores are flattened to form a dipole with a head-tail structure, (ii) 
the bridging phase in which nearly antiparallel vortex lines are annihilated and linked 
by viscous cross-diffusion at the interaction zone to create bridges orthogonal to the 
original vortex tubes, and (iii) the threading phase in which the developed bridges 
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ED 

FIGURE 8. Illustration of bridging. Two vortex rings are interacting at the centre. they are pushed 
from left and right by a converging flow designated by big arrows. Double and round arrows 
indicate the directions of vorticity and the rotation of vortex lines, respectively. Letters p and q 
represent the reconnected and unreconnected vortex lines, respectively. The number of reconnected 
lines increases as time goes on from (a) to (c). Annihilation of vorticity is taking place in hatched 
areas. The vortex lines are twisted like right-handed and left-handed screws in the shaded and blank 
rectangles, respectively. 

reverse the curvature of yet-unreconnected parts of the interacting vortex tubes so 
that the original anti-parallel vortex lines begin to move apart ; the reconnection 
process remains incomplete, leaving threads as remnants of the original tubes. These 
threads are killed by cross-diffusion with the main core, which is quite different from 
the case studied by MH. These three phases roughly correspond to periods (i) 0 < 
t 5 2.5, (ii) 2.5 5 t 5 4.5 and (iii) t 2 4.5. 

The interaction time or duration of the bridging phase (ii) depends on how fast the 
two vortex tubes are pressed against each other. The velocity field around the 
interaction zone is induced by the vorticity in the interaction zone as well as by the 
remains of the vortex tubes. In  fact, the contribution from the remains of the vortex 
tubes is dominant in the first reconnection process. Thus, in spite of many attempts 
at exploration (Schatzle 1987; Takaki & Hussain 1985; Ashurst & Meiron 1987), it 
is not clear whether the reconnection interaction time can be expressed only in terms 
of local quantities which characterize the interacting portion of the vortex tubes. 

3.3. Bridging 
The cross-linking of vortex lines in the present reconnection process can be explained 
by the bridging mechanism observed in the interaction of a pair of ant,i-parallel 
sinusoidal vortex tubes (MH). The mechanism of bridging is illustrated in figure 8. 
(As emphasized by Melander & Hussain (1990), note that vortex lines in a viscous 
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FIQURE 9. Incompleteness of cancellation. A pair of anti-parallel vortex lines at the centre is bent 
upward by the velocity (a big arrow) induced mainly by vorticity around the bridges, the directions 
of rotation of which are designated by round arrows. This upward bending of the anti-parallel 
vortex lines induces self-repelling velocity (small arrows) and causes them to move apart. Double 
arrows represent the direction of vorticity. 

flow are not material lines, although they are treated so throughout this paper. This 
idealization is helpful in the discussion.) The direction of vorticity is shown by double 
arrows. The vortex rings rotate in the directions indicated by curved arrows so that 
they move out of the paper as a whole. The two vortex rings are pushed against each 
other by self-induction or by an external flow. In  the present simulation, the 
converging flow is generated by the vortex rings themselves, since we have no 
external flow. (There are image flows because of the periodic boundary condition, but 
their contribution to the converging flow is small compared with the self-induction 
velocity of the vortex rings.) 

When two vortex rings come into contact, the outermost vortex lines, which are 
in opposite directions, are cancelled by viscous cross-diffusion in the interaction zone 
(the hatched areas in figure 8). At the same time, they are connected with their 
counterparts in the other vortex rings at the ends of the interaction zone (figure 8a).  
We denote by p in figure 8 typical vortex lines which have been reconnected during 
this process, and by q those lines which have not yet been reconnected. Since the two 
vortex rings are pushed against each other constantly, the number of reconnected 
vortex lines increases over time. The vortex lines are rotating around each other in 
the vortex cores so that lines p and q must be tangled at the ends of the interaction 
zone (figure 8 b ,  c). The vortex lines are strongly twisted especially in the regions 
denoted by rectangles in figure 8(c), like right-handed and left-handed screws in 
shaded and blank rectangles, respectively. This means that super-helicity density is 
large there if the magnitudes of w and x do not vary very much (discussed in 57). The 
portions of vortex line p that link the two rings are called bridges. With the help of 
the self-induced velocity the reconnected vortex lines accumulate ahead of the 
advecting anti-parallel tube pair (i.e. at  the back of the rings). 

Meanwhile, the cancelling part (the two vertical lines a t  the centre in figure 8 b ,  c) 
of the vortex rings is bent by the velocity field induced by the upper and lower parts 
of the vortex rings in such a way that its centre moves out of the paper. This in turn 
causes the two vertical lines, which are curved in planes perpendicular to that of the 
paper, to move apart due to the reversed self-induction velocity, and prevents 
further cancellation. This situation is illustrated from another angle in figure 9. The 
direction of rotation of vortex rings, which induces an upward velocity (a big arrow) 
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FI'I~CRE 10. Streamlines and contours of vorticity components ( - w z  in the  (sl,ss)-plane in (a, c ) ,  
and w1 in the (z2, s,)-plane in ( b ,  d ) )  in moving frames at t = 3 for Case I. Frames ( u ,  b) are moving 
with the vortex dipole ( + l . O ) ,  and ( c ,  d )  with the bridges ( -  1.3). Thin curves are parallel to  the 
velocity vectors on the planes. The contour levels drawn are f 10 YO and *40% of ~ u ~ m ~ x  for ( u ,  c ) ,  
and k2Y0 for (b ,  d ) .  Thick solid and broken lines denote positive and negative values. Arrows on 
the centrelines indicate the direction of the flow around the stagnation points. 

a t  the centre is indicated by curved arrows. This upward velocity bends the anti- 
parallel vortex lines upward. These curved vortex lines have self-induced velocity 
away from the mid-plane and move apart in the directions indicated by small arrows. 
Thus, the cancellation is always incomplete and some uncancelled vorticity is left 
behind as threads. The degree of incompleteness of cancellation or the amount of 
remnant circulation depends upon the shape of the vortex rings during the 
reconnection as well as upon viscosity. This will be discussed further in $4. 

The mechanism of formation of bridges, the vortex reconnection, has been 
discussed in relation to streamlines or stagnation points by MH. Before discussing 
our new explanation of bridging in terms of vortex stretching rate: it may be 
appropriate to give here some comments on their argument concerning streamlines. 

The streamlines on planes parallel and perpendicular to the vortex dipole a t  t = 
3 for Case I are drewn in frames moving with two different velocities in figure 10. 
Figure 10 (a, c) represents the strearnlincs in the (q, x,)-plane which corresponds to 



CO&9iOn of two vortex ring5 603 

line AA’ in figure 8 ( b ) .  These are in frames with the dipole and the bridges, 
respectively. The translational velocity of the dipole or bridges) is estimated from 
the weighted mean velocity, uIo21 dx/ lw21 dx (or i ulwJ d x / j  loll dx), where the 
integration is performed over the whole domain of figure 10 (a)  (or b) .  In  these figures 
the trajectories of fluid particles which start at  the regular grid points are drawn by 
integrating them along the velocity vectors at this time. The length of each curve is 
proportional to the magnitude of velocity there. The curves are parallel to the 
velocity vectors. Since each curve starts from one of the regular grid points, it  is easy 
to identify the direction of velocity. The velocity component normal to  this plane is 
identically zero because of symmetry. The contour of vorticity --o, is superimposed 
to show the position of the dipole. The contour levels are _+ 10 and f40% of lmlrnax. 
A fluid particle in the right-hand half of the dipole rotates counterclockwise and in 
the left-hand half clockwise. It takes about 0.84 time units for a typical fluid particle 
in the dipole, the mean radius of trajectory of which is about 2 mesh lengths, to go 
around the core once. Thus, the interacting core undergoes one or more turns during 
the first reconnection, 3.5 5 t 5 4.5, say. 

There are two stagnation points on the centreline, one above and the other below 
the dipole. Their locations, however, are very different in figures 10(a) and lO(c). In 
fact, they are located outside figure lO(a). The direction of the flow around the 
stagnation points is indicated by arrows in figure lO(c). The direction of the flow 
around the lower stagnation point is the reverse of around the upper stagnation 
point. According to MH, those vortex lines that are advected by the velocity field (in 
a frame moving with the dipole) and come close to the centreline between the two 
stagnation points are transported along the centreline to the lower stagnation point. 
These vortex lines, which are almost perpendicular to this plane, are advected and 
accumulate at the lower stagnation point to make a bridge. This argument may, 
however, suffer from several difficulties. First, the streamlines in a moving frame do 
not generally represent the motion of vortex lines unless the flow is steady. Second, 
the stagnation point is not a sink in this plane, so that vorticity does not necessarily 
accumulate there. Third, the velocity field is not Galilean invariant so that the shape 
of the streamlines and the position of stagnation points are frame-dependent (cf. 
figures 10a and 1Oc). Fourth, there is ambiguity in determining the velocity of the 
reference moving frame for an unsteady vortex dipole (or anti-parallel vortex tubes) 
since the vorticity distribution over the dipole varies in time. There may be several 
ways to determine the ‘velocity’ of the dipole. Actually, as will be described below, 
a bridge is created closer to the point of largest vortex stretching rate (equation 

Figures 10(b) and 10(d) show the streamlines and the contours of the normal 
component of vorticity wI on the (x,, 2,)-plane (BB’ in figure 8 b )  on the same moving 
frames as figures 10 (a )  and 10 (c), respectively. The contour level of vorticity is _+ 2 Yo 
of \mirnax. The two islands represent embryos of bridges. The bridges are rather close 
to the lower stagnation point in figure 10(d) but not in figure lO(b).  This is trivial 
because figure 10 (d) is a frame moving with the bridges themselves. In  figure 10 (d), 
the upper stagnation point in the (xl, x,)-plane is regarded as a source in the (x2, 2,)- 
plane, and the lower stagnation point as a sink. The Aow is converging in two 
orthogonal directions (z2 and 2,) and diverging in one direction (q) at the lower 
stagnation point. The flow is directed downward everywhere between these two 
stagnation points in the symmetry (x2, z,)-plane. 

We have also examined the behaviour of the streamlines both on the (zl, z,)-plane 
and on a plane passing through a bridge with other estimations of the velocity of the 

(3.3)). 
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FIQKJRE 11. Angular dependence of stretching rate on planes parallel to (a) the (xlr x,)-plane, (b) the 
(x1,x8)-plane and (c) the (x,,z,)-p!ftne for Case I. (i) t = 3, (ii) 3.5, (iii) 4. The planes are (a) (i) 
x9 = 4082, (a) (ii) xa = 43A2, (a) (111) xa = 46Ax, (6) (i) x8 = 4Ax, (b) (ii) x2 = 4Ax, ( 6 )  (iii) 2, = S A z ,  
(c) (i) x1 = 4Ax, (c) (ii) x1 = 4A2, and (c) (iii) z1 = Ax. The planes in (a) and (b) pass through bridges, 
while those in (c) a thread. The distance from the centre ofa butterfly or a dumbbell shape to a point 
of its periphery is proportional to the stretching rate in the direction of the point seen from the 
centre. The black and blank areaa denote respectively positive and negative values of stretching 
rate. The 10% and 40% levels of contours of the vorticity norm are superimposed for reference. 

20-2 
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dipole, that is, by integrating the weighted velocity over regions in which vorticity 
magnitude exceeds several thresholds. For larger values of the thresholds, the velocity 
of the dipole is closer to that of the bridges, and therefore the lower stagnation point 
comes near the position of the bridges. 

The rate-of-strain tensor 
- 

8. = -  '(a, -+' a u ) ,  i , j = 1 , 2 , 3 ,  
a3 2 axj axi 

is a measure of deformation of a fluid element in a flow. This is a useful indicator of 
the vortex stretching. The stretching rate of a fluid element is a function of the 
direction as well as of the position of the element. Let e" be a unit vector. The 
stretching rate of a fluid element in the direction of e" is expressed as 

Figure 11 shows the angular and spatial distributions of the stretching rate on planes 
parallel to (a)  the (x , ,  2,)-plane, ( b )  the (x,, x,)-plane and (c) the (x, ,  2,)-plane at (i) 
t = 3, (ii) 3.5 and (iii) 4. The 10% and 40% levels of contours of the vortieity norm 
are superimposed for reference. The distance from the centre of a butterfly or a 
dumbbell shape to a point on its periphery is proportional to the stretching rate in 
the direction of the point seen from the centre. The directions of positive and 
negative stretching rates, or the expanding and contracting directions, are 
differentiated by black and blank regions, respectively. The x,-coordinates of planes 
parallel to the (x,,  x,)-plane (figure l l a )  and the 2,-coordinates of planes parallel to 
the (x,,x,)-plane (figure l l b )  are chosen so that these planes pass through bridges 
(CC' in figure 8 b ) .  The planes of figure 11 (c), on the other hand, are chosen to focus 
on a thread (BD' in figure 8 b ) .  

Along the x,-axis in figure 11 a (i) we see that fluid elements are being stretched in 
the direction of the 2,-axis and the stretching rate is maximum at x, x &4Ax, Ax 
being the mesh-size (=  27c/64). This is more clearly shown in the vortex stretching 
rate (see (3.3) and figure 12 below). These positions of largest stretching rate coincide 
with the 2,-coordinates of the initial bridges (see figure lob). As time goes on, (i)+ 
(iii), the high-stretching region moves away from the x,-axis. By comparing these 
positions with the cross-section of the bridges (figures 6a-c), we find that the bridges 
are moving apart while being stretched during this period. At  t = 4 (figure 11 a (iii)), 
we see that fluid elements are being stretched along the x,-axis for 1x21 5 4Ax, where 
no substantial vorticity is left after the viscous cross-diffusion. This stretching of 
fluid particles along the x,-axis is caused by the induction velocity of the main part 
of the approaching vortex rings. 

Figure 11 b(i) also has some interesting features. The fluid elements at the lower 
half of the 2,-axis are being stretched in the x,-direction. The 2,-coordinate of the 
largest stretching rate is about 40Ax, which agrees with the x,-coordinate of the 
centre of a bridge (see also figure lob). It is clear in figure 11 (b )  (ii, iii) that the bridge 
evolves where the stretching is strongest. Another interesting feature of figure 
11 ( b )  (i) is the spatial distribution of the stretching direction. Notice that it points 
horizontally in the lower half of the x3-axis, but vertically in the upper half. This 
distribution of the stretching rate may have a close relation to the head-tail 
structure of an interacting vortex dipole mentioned a t  the beginning of this section. 
The head is widened by the horizontal stretching, while the tail is extended by the 
vertical stretching (Kida et al. 1991). 
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FIQURE 12. Angular dependence of the vortex stretching rate on the same plane (x3 = 43Ax) as 
in figure l l (a) ( i i ) .  t = 3.5. 

Figure 11 (c) represents the structure of a thread. Look at the top centres of figure 
11 ( c )  where a thread is located. The fluid elements there are being stretched in the 
2,-direction. Although we can only see a thread in figure 11 (c) (ii) at these contour 
levels, it is clear that the thread is actually being stretched. 

The spatial distribution of the stretching rate of fluid elements is expressed by s(e^), 
but a more appropriate quantity for vortex stretching rate may be 

s,(E) = ( a . E ) s ( e ^ ) .  (3.3) 

In  figure 12 we plot the angular dependence of s,(e") on the same plane as in figure 
11 (a) (ii) at t = 3.5. It is now clear that vorticity is intensified most strongly at  
x2 x 14Ax where the initial bridges are created. 

It is interesting to compare the present numerical results with Schatzle's (1987) 
laboratory experiment, which is one of the most extensive experiments of the 
interaction of two vortex rings. First, we note that the vorticity distribution across 
vortex tubes is nearly Gaussian in his experiment (figures A.5 and A.6 in Schatzle 
1987), which is used as the initial condition of our numerical simulation. 
Unfortunately, a precise comparison is impossible because the initial conditions (the 
ratio of R and D for example), the Reynolds number and the Schmidt number are 
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different in his experiment and our numerical simulation. Nevertheless, we find that 
the spatial distribution of the rate of strain is qualitatively the same a t  least on the 
symmetry plane (xl = 0) (cf. our figure l l b ( i )  and frames 16 of figures 6.6, 6.9 and 
6.11 in Schatzle 1987). An asymmetric flow structure observed in his experiment may 
have developed from either unavoidable asymmetry of the equipment or un- 
controllable small disturbances. This is in contrast with the persistence of the 
symmetry of the flow in our numerical simulation. 

3.4. Second reconnection 

After the first reconnection is over, a distorted vortex ring and the two threads move 
further along the x,-axis, changing their shape in a rather complicated manner 
(figure 4a, b(vi), (vii)). Some parts of the ring are expanded and others are 
compressed, while the whole tube is being twisted. The threads left after the first 
reconnection go around the main tube and are diffused rather rapidly. Viscous 
dissipation of kinetic energy also occurs more intensely in the threads ( $ 5 ) .  

The portions of the vortex tubes that were farthest apart at the initial instant 
come into contact at around t =  9 (see figure 4a-d(viii)). Then the second 
reconnection begins. Around this time we again have a vortex dipole with a head-tail 
structure (figure 5m). Notice, however, that the direction of motion of the dipole is 
opposite to that in the first reconnection (figure Sf, m). The dipole now moves in the 
positive 2,-direction. 

As stated before, the details of the vortex reconnection are also affected by 
vorticity outside the interaction region. During the first reconnection, the vorticity 
distribution away from the interaction region induces a strong converging flow a t  the 
interaction zone. This flow presses the two vortices of the dipole closer and increases 
the rate of cancellation. Remember that the converging flow is caused mainly by the 
vorticity distribution of the outer part of the vortex tubes parallel to the interaction 
zone. During the second reconnection, however, there is no such parallel part of the 
vortex tube and therefore no strong converging velocity is induced in the interaction 
zone. Only the self-induced velocity squashes the dipole. As a result, the approach 
of the interacting vortex tubes is slow, and so is the reconnection. The turnover time 
of a typical fluid particle in a core is 1.07, so that it rotates in the core four times 
during 9 5 t 5 13 (from (viii) to (x) in figure 4a-d). Remember that a fluid particle 
rotates in the core only once during the first reconnection ($3,3). The mechanism of 
the second reconnection is essentially the same as that of the first. However, because 
it is slower, we can probe its details. 
As seen in figure 4(a-d(viii)), two closest portions of the vortex tube come into 

contact at t x 9. Vortex lines reconnect to create bridges orthogonal to the 
interacting anti-parallel parts of the vortex ring (see two humps on both sides of the 
interaction region in figure 4a-d(ix)). A large amount of vorticity is left uncancelled 
and takes the form of ‘connecting rods of an eye glass’. This uncancelled part is 
called a leg (Kida et al. 1989), which corresponds to the thread at  the first 

FIQURE 13. Streamlines and contours of vorticity components normal to planes in a frame moving 
with the bridges at t = 9 for Case I, where the velocity of the moving frame is 1.5 upward : (a) the 
(zl ,  %,)-plane and ( b )  the (z2, z,)-plane. Thin curves are streamlines. The contour levels drawn are 
+20 YO and +40% of Jmlrnu for (a), and f 10 YO for ( b ) .  Thick solid and broken lines denote positive 
and negative values. Arrows on the centrelines indicate the direction of the flow around the 
stagnation points. 
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FIGURE 13. For caption see facing page. 
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FIGURE 14. Angular dependence of the stretching rate on planes parallel to (a) the (q, z2)-plane and 
(b)  the (x,,x,)-plane at t = 9 for Case I. (a) x3 = 108Ax, ( b )  x2 = 4Ax. These planes are chosen so 
that they pass through bridges. The 10% and 40% levels of contours of the vorticity norm are 
superimposed for reference. 
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FIQURE 15. Angular dependence of the vortex stretching rate on the =me plane (za = 108Az) 
m in figure l4(a). t = 9. 

reconnection. The mechanism of bridging is the same as that illustrated in figure 8 
(but the direction of vorticity there should be reversed). 

The streamlines and vortex contours on the (x,, x3)- and the (x2 ,  x,)-planes at the 
beginning of the second reconnection (t = 9) are shown in figures 13(a), 13(6), 
respectively. These graphs are similar to  the corresponding ones for the first 
reconnection in the frame moving with the bridges (see figures lOc, a!), except for 
several differences. The direction of the head-tail structure, or the sign of vorticity 
in the cores, is opposite. The stagnation points are a saddle and a source on the (q, x3)- 
plane (figure 13b),  the former corresponding to the sink at the bottom centre in 
figure 10 (d). The appearance of either a stagnation point or a sink may be explained 
by considering the intensity of bridges and the curvature of the main vortex tube 
(Pumir & Siggia 1987). The locations of stagnation points in the frame moving with 
the dipole are far from those of the bridges, as we saw in figure 10(a, 6). 

In figure 14(a, 6) is plotted the angular dependence of stretching rate s(E)  at t = 
9 on planes parallel to the ( z , , x 2 ) -  and the (x,,x,)-planes, respectively. These 
planes are chosen to cross the centre of a bridge. As seen in figure 14 (a), fluid elements 
in the vicinity of the x2-axis are being stretched in the x,-direction. To see the spatial 
distribution of vorticity intensification, we plot in figure 15 the vortex stretching rate 
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FIGURE 16. Time-development of circulation around vortex cores for Case I :  -, circulation 
around the cross-section of a vortex core which is identified aa one of the outer cores on the (xl, x3)- 
plane at t = 0;  ---, circulation around the cross-section of a bridge on the (x2,x3)-plane 
which is identified as an inner core in figure 6 ( g - k ) ;  the sum of the two circulations. 

s,(ê ) on the same plane as in figure 14(a) at t = 9. It is seen that the vortex stretching 
rate has maxima around lxzl = 4Ax, which coincide with the 2,-coordinates of the 
bridges (figure 136). The stretching rate in figure 14(b) has a structure similar to that 
in figure 11 ( b )  (i), and the same argument used before about the stretching of bridges 
and the formation of the head-tail structure can be used here also. Notice here that 
the horizontal stretching at top centre represents the stretching of a bridge and that 
its magnitude is larger around x3 = 107Ax, which is close to the positions of the 
bridges (figure 13 b)  . 

The bridges grow a t  the expense of the vorticity of the anti-parallel part of the 
tube. Meanwhile, the vorticity in the growing bridges becomes strong enough to push 
back the legs to the minus x,-direction to reverse the curvature of the legs so that 
they move apart. Because there is no external converging flow to maintain the 
reconnection, it stops at an early stage, leaving more uncancellecl vorticity than in 
the first reconnection. 

The time-development of the circulation around a vortex core in the (x,, z,)-plane 
which is identified as one of the outer cores in figure 5 (a)  is plotted by a solid line in 
figure 16. A broken line represents the circulation around a cross-section of a bridge 
in the (x,, x,)-plane (one of the inner cores in figure 6g-k), and a dash-dot line denotes 
the sum of the two circulations. The circulation in the (x,, z,)-plane decreases rather 
gradually until t x 8.5 when the second reconnection takes place. Then it beings to 
decrease more rapidly, and at  the same time circulation in the (x,, 2,)-plane appears. 
This shows that the 2,-component of vorticity is transferred to the x,-component 
during the second reconnection. The sum of these two circulations should be constant 
if cross-diffusion occurred only at the interaction zone where the bridges are created. 
However, the cross-diffusion between vortex rings of adjacent periodic boxes is non- 
negligible, which leads to the decrease of the total circulation. 

Let us discuss the time-development of the maximum of vorticity norm I w I ,  which 
has been used for reference levels in our vorticity contour plots. The instantaneous 
maxima of vorticity norms on the two symmetry planes are shown in figure 17(a). 
Here circles and triangles represent the maxima in the (x,, 2,)- and (x,, x,)-planes, 
respectively. The x,-coordinate of the point of the maximum on the (x,, x,)-plane is 
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FIGURE 17. (a) Time-development of the maxima of IwI on the (sl, %,)-plane (circles) and on the 
(s,,s,)-plane (triangles) for Case I. (b )  The s,-coordinate of the position of the maximum on the 
(sl, s,)-plane. (c) The s,-coordinate of the position of the maximum on the (z2, 2,)-plane. 
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plotted in figure 17 ( b ) ,  and the 2,-coordinate of the point of the maximum on the (x,, 
2,)-plane in figure 1 7 ( c ) .  The behaviour of these maxima can be understood easily 
with reference to figures 5 and 6. Note that there are several local maxima in each 
symmetry plane; we must discriminate which gives the absolute maximum. In figure 
17(a) the maxima at different points are not connected. 

The initial increase of the maximum on the (x,,z,)-plane, which is locat,ed in the 
inner cores in figure 5 ,  results from the vortex stretching due to the mutual induction 
velocity. The increase, however, is stopped at  an early stage of evolution ( t  x 0.5) 
owing to viscous diffusion. It decreases until t x 3 when the two vortex rings begin 
contact. The rapid increase from t = 3 to 3.5 is a result of a strong stretching of 
vortex cores a t  the beginning of the first reconnection ($3.2). As seen in figure 17(b), 
the maximum is still in the inner cores. The strong cancellation of vorticity in the 
inner core during the first reconnection, however, leads to a rapid decrease of 
vorticity there. As a result, the peaks in the outer core dominate for a while (4 5 
t 5 5 ) .  After this time, as seen in figure 17 ( b ) ,  the cores in which the maximum occurs 
alternate a few times, but the maximum value itself does not exhibit any sharp jump. 
Another increase around t = 8 is due to the vortex stretching in the approaching 
vortex cores just before the second reconnection, and a rapid decrease after t x 1 1  is 
due to viscous diffusion in legs. 

The maximum on the (x2, 2,)-plane begins to increase very rapidly from t x 3.5 as 
newly born bridges grow in the fist reconnection. As seen in figure 17(c),  the x2- 
coordinate of the maximum increases very rapidly. This, of course, corresponds to 
the rapid expansion of the vortex ring in the x,-direction (see figure 4b (v-vii)). The 
growth of the maximum in the (x2, 2,)-plane ceases at around t = 4.5, meaning that 
the stretching of the bridges is no longer effective. Thereafter, the vorticity decreases 
by viscous diffusion until the second reconnection occurs. Another cross-over 
happens when the intensity of the new bridges born in the second reconnection (inner 
cores in figure 6g-k) dominates that of the outer cores, indicated by a jump in figure 
17(c) at t x 10. After t x 11, this maximum decreases again, i.e. the bridges are no 
longer being stretched and neither are the legs. 

The absolute maximum lmlmax of the vorticity norm in the whole field is plotted in 
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FIGURE 18. (a) Time-development of for Case I. ( b )  The position (m) of lmlmax in the (xl,z2)- 
plane. The iso-surfaces of vorticity norm at the level of 25% of l t ~ l ~ ~ ~  are drawn for reference. 
(i) t = 3, (ii) 4, (iii) 5, (iv) 6, (v) 9, (vi) 1 1 ,  (vii) 13. 
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FIQURE 19. Time-development of lu&,ax: ., Case 11; 0,  Case 111; A, Case IV; and 4, Case V. 

figure 18 (a).  This, being by definition larger than the two maxima in figure 17 (a) ,  is 
very close to the envelope of the two maxima. The zl- and the x,-coordinates of the 
position of the maximum are plotted by solid squares in figure 18(b). The positions 
of the maxima move as follows. In the inviscid advection phase of the first 
reconnection they are located in the inner cores at  the closest point to the ( x , , x 3 ) -  
plane, where vortex lines are strongly stretched (figure 18b(i)). Then, in the bridging 
phase, they are lying in the threads (figure 18b(ii)). Up to this time they are on the 
symmetry (x2, x,)-plane. But, in the threading phase (4.5 5 t 5 7) they are shifted to 
the roots of the bridges, where the interaction between the bridges and the main tube 
is very active. The points of maxima move away from the (x,, z,)-plane together with 
the roots of the bridges. Meanwhile, the distorted main tube comes into contact with 
itself in the (x,,x,)-plane. In the advection phase (7 6 t 6 9) of the second 
reconnection the maximum points are on the nearest portion of the interaction zone. 
They shift to the legs in the bridging phase (9 5 t 5 11 5)  and then to the roots of legs 
in the threading phase. 

The calculation was finished at t = 13 because the vortex ring is stretched too 
much in the 2,-direction by this time, and the interaction among the rings in the 
adjacent boxes may not be negligible any more. What will happen after t = 13? 
According to more extensive simulations starting from smaller vortex tubes (Cases 
11-V, see $4), the change over time of the vortex shape is very slow and no interesting 
topological change has been observed. 

4. Effects of initial conditions 
We have seen so far that two circular vortex rings which start side by side on a 

common plane (the inclination angle 0 = 0') undergo two successive vortex 
reconnections. These reconnection processes are governed by the characteristics of 
the flow at the interaction zone and are influenced by the entire shape of the vortex 
rings. In this section, we consider the dependence on the initial conditions of the 
characteristics of the reconnection processes. 
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FIGURE 20(a,b). For caption see page 619. 
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FIGURE 20 (c, d).  For caption see facing page. 
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4.1. Initial inclination angle 

In  order to examine the dependence of the phenomenon on the initial conditions we 
have simulated flows with four different inclination angles : 0 = O", 15", 30" and 45" 
(see figure 3). To reduce undesirable interactions with vortex rings in the adjacent 
periodic boxes we halved the sizes of the vortex rings and the distance between the 
centres of the rings ($2). This reduction requires larger viscosity (smaller Reynolds 
number) to maintain the accuracy of the calculation. The cut-off error due to 
truncation of the Fourier modes can be conveniently monitored by looking at the 
behaviour of the energy spectrum around the cut-off wavenumber ($5). The 
parameters used in each run are listed in table 1. 

The time-development of lalmax is shown for Cases II-V in figure 19. Although the 
details of the time variation are different, it decays rather similarly for different 
cases. These values of maximum vorticity norm will be used for the reference levels 
in the plots of vorticity given below. 

Figure 20 shows the iso-surfaces of the vorticity norm 101 at several representative 
times for Cases II-V. They are seen from the (2,1,5)-direction. 

4.2. Efect  on jirst reconnection 

All four cases undergo the first reconnection. Not surprisingly, the time at  which 
their interaction begins is earlier for larger initial inclination angle 0. The occurrence 
of a vortex reconnection and the degree of completeness of cancellation depend not 
only on the characteristics of the interacting parts of the vortex rings but also on the 
velocity field around the interaction zone. Since the velocity field is determined by 
the entire distribution of vorticity, the global shape of vortex rings affects the 
reconnection process. Among other factors, the curvature of an interacting nearly 
anti-parallel vortex pair and the strength of the converging velocity field at the 
interaction zone are crucial in determining the completeness of reconnection. As seen 
in figure 20, the global shape of the vortex ring is different for different initial 
inclination angles. It is interesting in particular to note that the degree of 
completeness of cancellation of vorticity does not change monotonically with angle 
0 but cancellation is most effective a t  some angle between 0" and 45". 

To see the structure of the vortex core just after the first reconnection, we plot in 
figure 21 the cross-section of vorticity component -02 on the (xl, %,)-plane for Cases 
II-V. The solid and broken lines represent the positive and negative values, 
respectively. The remnants of the interacting vortex dipole, or threads, are advected 
around two main vortex cores. For small initial inclination angles (0 = 0" and 15") 
we see two small cores, which originate from the tail of the interacting dipole, being 
advected upwards between two main cores (figure 21 a, b) .  For a large angle (0 = 45", 
figure 2 1 4 ,  on the other hand, an interacting dipole with a head-tail structure 
appears below the main cores. Interestingly, for an intermediate angle (0 = 30", 
figure 21c), we can see that the head and tail are separate. 

FIGURE 20. Perspective view of the iso-surfaces of the vorticity norm seen from the (2, I ,  5)- 
direction. (a) Case 11: (i) t = 0, (ii) 3, (iii) 4.5, (iv) 6, (v) 7.5, (vi) 12, (vii) 18. The levels plotted are 
40% of ~ u ~ , , , ~ ~  at t = 0, 3, 6, 12 and 18, and 50% at t = 4.5 and 7.5. ( b )  Case 111: (i) t = 0, (ii) 1.5, 
(iii) 3, (iv) 4 .3 ,  (v) 6, (vi) 7.5, (vii) 10.5. 40% level at t = 0, 1.5, 3 and 10.5, and 50% at t = 4.5, 
6 and 7.5. (e) Case IV: (i) t = 0 ,  (ii) 1.5, (iii) 3, (iv) 4.5, (v) 6, (vi) 7.5, (vii) 10.5. 40% level at 
t = 0, 1.5 and 3, and 50% at t = 4.5, 6, 7.5 and 10.5. ( d )  Case V :  ( i )  t = 0, (ii) 1.5, (iii) 3, (iv) 4.5, 
(v) 6, (vi) 7.5, (vii) 10.5. 40% level at t = 0, 1.5, 3 and 10.5, and 50% at t = 4.5, 6 and 7.5. 
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FIQURE 21. Cross-section of vorticity component -w2 on the (x1,x8)-plane after the first 
reconnection. (a) t = 6 for Case 11, ( b )  t = 3 for Case 111, (c) t = 2 for Case IV, and ( d )  t = 1.5 for 
Case V. Solid and broken lines represent positive and negative values, respectively. The levels 
plotted are 5, 10, 20, 40 and 80% of lmImax. 
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Case B(deg.) Head Tail Sum t 

I 0 -  0.27t 0.27t 6 
I1 0 -  0.13 0.13 6 

I11 15 - 0.07 0.07 3 
IV 30 0.16 0.04 0.20 2 

TABLE 2. Remnant circulation. (t Divided by 4 to compare with the other cases (see §2).) 

V 45 0.52 - 0.52 1.5 

The remnant circulation in a thread after the first reconnection is listed in table 2. 
By comparing Cases 11-V, we see that the remnant circulation in the tail part 
decreases with 8, whereas that in the head increases. The sum of the two circulations 
is a minimum at 8 = 15", indicating that vorticity cancellation is most efficient at 
this angle though it is never complete. 

This dependence of remnant circulation on the initial inclination angle can be 
explained qualitatively by considering the relative positions of the inner and outer 
cores in the (xl, 2,)-plane. Remember that the inner cores are pressed together by a 
converging flow induced by the outer cores, and vorticity is cancelled at the 
interaction zone around the (x2, z,)-plane by viscous cross-diffusion (53.2). From the 
geometry we expect that for smaller 8 the threads would slip through the interaction 
zone before the outer cores come close enough to interact, whereas for larger 8 the 
outer cores touch before the threads meet. Since the threads do not stay in the 
interaction zone for long, the cancellation of vorticity is not effective for both of these 
extreme angles. Thus we expect that there is a certain angle at  which the inner cores 
stay in the interaction zone for a relatively long time so that the cancellation is 
maximum. 

4.3. Effect of viscosity 
The initial condition for Case I1 (figure 20a) is similar to that for Case I which was 
discussed in detail in $3. As stated in $2, the effective viscosity, or the inverse of the 
Reynolds number, for Case I is half that for Case 11. Thus, we can examine the 
viscosity dependence of the motion of vortex rings by comparing these two cases. 

By comparing figures 4(a) and 20(a),  we recognize that their shapes are very 
similar at corresponding times. The global motion of the vortex rings, i.e. the 
translation along the x,-axis and the rotation toward the (x,,x,)-plane seem to be 
independent of viscosity. The behaviour of the vortex motion in the interaction zone, 
however, is affected by viscosity. The mechanism of bridging may be the same, but 
the cancellation of vorticity is less complete for smaller viscosity; that is, the 
remnant vortices have higher circulation. In table 2 we list the remnant circulation 
after the first reconnection for Case I, which is reduced by a factor of 4 for 
comparison with the other cases ($2). We see that the remnant circulation is higher 
at larger Reynolds numbers. These results on viscosity dependence suggest that the 
inviscid calculation of vortex motion, e.g. by the vortex filament and vortex-in-cell 
methods, can simulate the global motion of vortex rings but not vortex 
reconnections. 

4.4. Second reconnection 
The motion of vortex rings after the first reconnection is also different for different 
initial inclination angle 8. The second reconnection is more complete (i.e. ratio of 
circulations in bridges and threads is higher) for 8 = 15" and 30". Bridges in the 
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FIGURE 22. (a) Decay of energy. ( b )  Change in time of energy dissipation rate. -, 
___ , Case I11 ; Case IV ; Case V. 

Case I1 ; 

second reconnection are also created for the other two cases, but for 0 = 0' the process 
is very slow (compare the final times in figures 2 0 ~ 4 ,  and for 0 = 45' bridges are 
too weak to appear at the level of iso-surfaces plotted here. 

The viscosity dependence of the vortex motion is more prominent a t  later times. 
By comparing figure 20(a) with figure 4(a), we see that viscosity reduces the 
curvature of vortex rings and also the approaching velocity of the two rings. 
Remember that Case I can be compared with Case I1 (v = 0.005) by the change of 
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variables given in (2.9) with reduced viscosity v = 0.0025. We therefore expect that 
the second reconnection would take place more completely for smaller viscosity. 

5. Energy and enstrophy 
The kinetic energy of fluid motion decays through dissipation controlled by strain 

rate and viscosity. Since a reconnection produces complicated fine-scale motions and 
the viscosity plays the key role in the mechanism, a substantial decay of kinetic 
energy is associated with a vortex reconnection. Figure 22 ( a )  shows the evolution of 
kinetic energy &‘(t), (2.7), for Cases II-V. The energy decays little at  first, but it 
begins to decay appreciably around t = 2-3, during the first reconnection. A 
reconnection produces finer scales - bridges and threads ; these contribute to higher 
dissipation. We can also see that the starting time of the dissipation of energy is 
earlier for larger angle 0 (54.2). 

Figure 22(b) shows that the energy dissipation rate -d&’/dt (enstrophy !&o12 
multiplied by 2v) decreases monotonically in time. The enstrophy production by 
vortex stretching is not large enough to compensate for the decrease in enstrophy 
caused by viscous dissipation. We see strange oscillations in the enstrophy decay 
which are invisible in the decay curves of energy. These oscillations are actually 
related to those rapid changes of vortex lines during the first reconnection process 
and the associated vorticity intensification by stretching. Humps are observed at  
t x 3.5, 1.2 and 0.9 for Cases 11, I11 and IV, respectively. A hump for Case V is hardly 
visible. As seen in figure 20 (u)-(c), the first reconnection occurs at these times. Such 
oscillations are not apparent in the decay curve of enstrophy during the second 
reconnection because the change is weaker. After these oscillations, the energy- 
dissipation rate decays algebraically in time as 

d b  -a -t--(p+l), p = 1.2-1.4. 
dt 

I n  particular, the curve for Case V has a wide range of power-law decay, beginning 
at t x 5. 

The expression for the change over time of energy is obtained by integrating (5.1) as 

&(t) = bo +CTl t-p, (5.2) 

where go and cT1 are constants. The power of the decay law is more evident in the 
energy-dissipation rate than in the energy. This is understood by noting either the 
existence of a constant term in the energy decay law (5.2) or the localness of the 
energy-dissipation rate. The regions in which the energy dissipation rate 

32 
u5 uk = vlw12+2v x - 

I ,  k-1 axk 
(5.3) 

takes large values are more localized in space than the kinetic energy field lu(x)I2 so 
$hat the total energy-dissipation rate is less affected by periodic boundary conditions. 
The second term on the right-hand side of (5.3) cancels out after integration with 
respect to the space coordinates. Therefore the mean values of E ( X )  and vlwI2 are 
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FIGURE 23(a,  b ) .  For caption see facing page. 
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RQURE 23. Perspective views of the iso-surfaces of the high-energy-dissipation field for Case I 
which are seen from directions (a) (2, 1, 5 ) ,  (b )  (0, 0, l) ,  (c) (1,  0 , O )  and (d) (0, 1, 0). The times and 
the levels of the iso-surfaces are (i) t = 3, 50 YO of the instantaneous maximum of dissipation rate, 
(ii) t = 5, 30 % (iii) t = 7, 70 %, (iv) t = 9, 50 % and (v) t = 11,  50 %. Outlines of the vortex ring 
(25% levels of 1 ~ 1 ~ ~ )  are drawn aa broken lines for reference. 



626 S. Kida, M .  Takaoka and F .  Hussain 

exactly equal. Their local values, however, differ appreciably owing to the second 
term which is typically of the same order of magnitude as the first. 

Figure 23 shows four different views of the high-energy-dissipation regions for 
Case I .  The regions where E(X) takes values larger than a specific fraction of the 
maximum are drawn. Broken lines denote the vortex core at the 25 YO level of lolmax 
(see figure 4). We see that e(x) is much more localized than lo(x)l in the interacting 
dipole before the reconnections, and in bridges and threads (or legs) after the 
reconnections. This indicates that the second term in (5.3) is of comparable order of 
magnitude as the first. While the enstrophy has a large organized structure, i.e. it 
extends more in space and its shape is preserved for relatively long times, the energy 
dissipation field is localized in space and changes rapidly. The spatial distribution 
of high-energy-dissipation regions will be discussed further in $7 in relation to the 
domains of large-helicity density. 

The power law (5.1) or (5.2) is similar to the energy decay law of fully developed 
turbulence. The power law of energy decay (5 .2)  in turbulence has been observed in 
many laboratory experiments (Uberoi 1963 ; Comte-Bellot & Corrsin 1966 ; Ling & 
Wan 1972; Ginevskii, Kolesnikov & Ukhanova 1979). The power p varies in the 
range 1.0 5 p 5 1.4 from experiment to experiment. The power law of energy decay 
in turbulence has also been derived theoretically and shown to be different for 
different kinds of turbulence. It depends especially on the characteristics of large- 
scale motions (Kolmogorov 1941 ; Saffman 1967 ; Tatsumi, Kida & Mizushima 1978; 
Kida 1981 ; Lesieur & Schertzer 1978). A recent numerical simulation by Kida & 
Murakami (1988) also demonstrated the power law of energy decay and its 
dependence on the large-scale motions. Our velocity field is not in a state of a fully 
developed turbulence as far as the large-scale motions are concerned. However, it is 
likely that the small-scale motions may be in a turbulent state especially in the 
bridges and threads. Since energy dissipation is confined to these small scales and the 
dissipation from these regions gives the dominant contribution to the total 
dissipation, it is reasonable to expect that the energy-dissipation rate obeys the same 
decay law as turbulence. 

The band-averaged three-dimensional energy spectrum function E(L), which is the 
kinetic energy of the Fourier components of wavenumbers between k - $  and k + $ ,  is 
plotted a t  several times for Case IV in figure 24; (a )  and ( b )  are linear-log and log-log 
plots, respectively. The peak wavenumber 4 at t = 0 corresponds to the core- 
diameter 2a ( x  4 mesh lengths), while the hump a t  wavenumber 10 corresponds to 
the ring diameter 2 0  ( x 10 mesh lengths). The energy is transferred rapidly to larger 
wavenumbers at  early times (t  5 3). This is a manifestation of the small-scale 
components being excited by stretching, flattening and reconnection of vortex rings. 
At later stages of evolution, the viscosity has an effect so that the energy spectrum 
decays over the entire wavenumber range. We note in passsing that the rapid 
decrease of the energy spectrum a t  large wavenumbrers is a good measure of the 
accuracy of the numerical simulation. 

The enstrophy-production rate by vortex stretching is expressed by 

P = 0 . s . o .  (5.4) 

Figure 25 shows four perspective views of iso-surfaces of the enstrophy-production 
rate for Case I a t  the same times as in figure 23 for the energy-dissipation rate. The 
positive enstrophy-production regions are shaded darker. We can see that the 
enstrophy-production rate is high in the interacting dipole before the reconnections, 
and in the bridges and threads after the reconnections. In  other words, the vorticity 
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FIQURE 24. The band-averaged three-dimensional energy spectrum for Case IV : 
(a) linear log-scale, ( b )  log-log scale: W, t = 0 ;  A, 3;  +, 6; $, 15. 

lines are stretched in these regions. There are similarities and differences in shape 
between the high-enstrophy-production and high-energy-dissipation regions (cf. 
figures 23 and 25). These regions are similar before the reconnections (e.g. t = 3 and 
9) but not after (e.g. t = 5, 7 and 11). In the latter stages the peaks of the energy 
dissipation rate are between those of enstrophy-production rate (cf. figure 18 in MH). 
This indicates that these two quantities behave quite independently of each other. 
Incidentally, it has been suggested that high energy dissipation is expected in regions 
of high enstrophy production, where the small-scale motions are excited by vortex 
stretching. The present results, however, suggest that this correspondence does not 
always hold. 
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FIGURE 25 (u, b ) .  For caption see facing page. 
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FIGURE 25. Perspective view of the iso-surfaces of the enstrophy-production-rate field for Case I 
which are seen from directions (a) (2, 1,5), ( b )  (0, 0, l ) ,  (c) (1, 0,O) and (d) (0, 1,O). The times and 
the levels of the iso-surfaces are (i) t = 3, 30 YO of the instantaneous maximum of the production 
rate, (ii) t = 5, 30%, (iii) t = 7, 50%, (iv) t = 9, 30% and (v) t = 11, 30%. Positive regions are 
shaded darker. Outlines of the vortex ring (25 YO of I W ~ , , , ~ ~ )  are drawn as broken lines for reference. 
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6. Passive scalar transport 
Smoke or dye have been used frequently in laboratory experiments for flow 

visualization. They are advected by fluid motion while spreading in space by 
molecular diffusion, but they hardly alter the fluid motion. If we neglect their 
influence on fluid motion, the motion of a floating material is governed by 

(6.1) 
a 
at 
-s+(U*v)s = K v 2 s ,  

where K is the diffusivity of the material S. 
The advection and diffusion terms are the same as in (2.2), but here there is no 

counterpart of the first term in the right-hand side of (2.2) which represents vortex 
stretching. That is, a passive material is advected by fluid motion and diffused by 
molecular diffusivity, whereas vorticity not only undergoes advection and diffusion 
but is also influenced by stretching of a fluid element. The lack of the stretching term 
in the scalar equation results in a difference in the time evolution of the vorticity and 
passive scalar fields in three-dimensional flows, even at unity Schmidt number (v = 
K ) .  Vorticity is intensified by stretching of a fluid element, whereas the density of a 
passive scalar is decreased. This reminds us of the repeated warnings against 
trusting flow visualization in turbulent flows for studying vortex dynamics and 
coherent structures (Hussain 1983, 1986). 

If the advection term is large enough that the stretching term may be neglected, 
the motion of a scalar is the same as that of vorticity. In regions where the stretching 
effect is dominant, on the other hand, their behaviour should be different. In the 
following, we will describe the similarities and differences in the time evolution of a 
scalar and vorticity. 

The time development of a passive scalar is simulated numerically for Case IV. 
Initially the scalar quantity has the same distribution as the vorticity magnitude 
(2.5). Both the viscosity v and the diffusivity K are set to be 0.005, i.e. the Schmidt 
number is one. 

Four perspective views of the iso-surfaces of the vorticity norm and the 
concentration of the passive scalar are drawn in figure 26 at t = 0, 1 ,  1.5, 2, 3, 5, 10, 
15. They are seen from the (2, 1,  5)-, (0, 0, 1)-, (1, 0, 0)- and (0, - 1 ,  0)-directions, 
respectively. At first sight, we recognize that the two quantities change similarly but 
not identically. During the first reconnection, the distributions of the vorticity norm 
and the scalar are similar except that the scalar quantity diffuses much more than the 
vorticity field (see figure 26a-d (ii-v) and their iso-surface levels). The similarity, 
however, seems to be rather accidental. Where a cancellation of vorticity occurs, a 
fluid element is stretched very much so that the scalar is also depleted. After the first 
reconnection, the difference between the two distributions is significant (see figure 
26a-d (iv-vi)). The two round portions at both ends of the ring are stretched by their 
own induction velocity so that vorticity is intensified there but the scalar quantity 
is diluted. This is the reason why we observe a relatively higher density of the scalar 
at the central region at t = 5 and 10. Then, at a later stage of the second 
reconnection, the two legs are stretched much faster than the ring portions. As a 
result, the scalar density in the legs is reduced and the density in the rings becomes 
relatively high. Meanwhile (at t = 15), we observe two holes at the positions of the 
vortex rings. Furthermore, a t  very large times ( t  = 21), we see two separate blobs of 
high density of scalar as visualized in experiments (figure 6c in Oshima & Asaka 
1977). 
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FIQURE 26(a). For caption see p. 634. 
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FIGURE 26(b). For caption see p. 634. 

Cross-sections of vorticity components (left) and the scalar density (right) on the 
(xl, x3)- and the (x2, z,)-planes are drawn at three representative times in figures 27 (a )  
and 2 7 ( b ) ,  respectively. At t = 2 ,  just after the first reconnection, the scalar has 
already been diffused much more than vorticity (compare their contour levels). At 
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FIQURE 26(c). For caption see p. 634. 

higher levels (shaded regions), the two quantities still look similar. However, at t = 
5 ,  after the merged vortex has undergone stretching and shrinking motions, the 
shapes of the two quantities are completely different (see figure 26(vi)). We cannot 
seen any resemblance between the two in the cross-section in the (x2, x,)-plane. The 
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FIQURE 26. Perspective views of the iso-surfaces of the vorticity norm (left) and a passive scalar 
(right) for Case IV. They are seen from directions (a) (2, 1 ,  5), ( b )  (0, 0, l ) ,  ( c )  (1, 0, 0) and (d) (0, 
-1,O) (i) t = 0, (ii) 1, (iii) 1.5, (iv) 2, (v) 3, (vi) 5, (vii) 10, (viii) 15 and (ix) 21. The isosurface levels 
of the vorticity norm are 40% a t  t = 3, 45 % at t = 21 and 50% a t  other times, and those of the 
scalar are 40% at t = 3, 60% a t  t = 15 and 21, and 50% a t  other times. 
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contours of the scalar quantity in the (x1,x3)-plane have two peaks similar to the 
vorticity norm only at the highest level (80%) at t = 5. Later, at t = 15, well after 
the second reconnection, the similarity in shape of the two quantities improves. The 
cross-sections in the (zz, z,)-plane resemble each other slightly at  higher levels, but not 
enough to merit discussion of the detailed structure. Note in passing, the especially 
impressive long tail in the scalar contour (figure 27a, b(iii)). 

Thus, we conclude that although the final appearance of the scalar and vorticity 
norm is similar, this is accidental because of two opposite effects in the two successive 
reconnection processes. It is not guaranteed that the change over time of a scalar 
quantity will represent the vorticity dynamics faithfully (see also MH). This 
conclusion was drawn from a simulation of a flow with unity Schmidt number and 
is expected to hold for other Schmidt numbers. 

7. Helicity dynamics 

The inner product of velocity and vorticity, 

7.1. Helicity and helicity density 

h,, = U - o  (7.1) 

is called the helicity density. It is a pseudo-scalar and represents the twisted structure 
of the velocity field. The equation for the time development of helicity density can 
be derived from (2.1)-(2.4) as 

where h, = 0 . x  (7.3) 

(7.4) x = V x o  is the super-helicity density and 

is the di-vorticity. (In a two-dimensional flow the di-vorticity plays an important 
role in the formation of vorticity gradient (Kida 1985).) 

By integrating 

where 

(7.2) over a periodic domain, we obtain 

d 
dt 
- H ,  = -2vH,, 

H,, = h,dx I 
H, = h,dx (7.7) I is the helicity and 

is the super-helicity. 
The helicity density changes locally in space and time through advection, diffusion 

and potential-force-like terms (see (7.2)). These nonlinear effects for the time 
variation of helicity H,, cancel out after spatial integration. Equation (7.5) implies 
that the helicity is a constant of motion in inviscid flow. In the inviscid case, an 
integration of helicity density over any domain surrounded by a vorticity surface is 
conserved. It is, however, not known whether H,, is conserved in the inviscid limit. 
There is no guarantee that H, would remain finite in this limit. 

The helicity density represents the torsional structure of the velocity field. As 
illustrated in figure 28, if the streamlines are twisted like a right (left)-handed screw, 
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FIQURE 28. The helicity density and the skewed structure of the velocity field. A positive 
(negative) helicity density represents streamlines twisted like a right (left)-handed screw. 

it gives a positive (negative) helicity density. This is true for a pure helicoida.1 motion, 
i.e. a solid rotation plus a constant axial flow and for a small deviation from it, but 
not always for a general velocity field. Likewise, the super-helicity density represents 
the torsional structure of the vorticity field. 

The helicities, H ,  and H,, have also topological meanings. They are relat,ed to the 
total amount of entanglement of the vorticity and di-vorticity lines, respectively 
(Moffatt 1969). The constancy of helicity in an inviscid flow is a manifestation of any 
reconnection of vorticity lines being prohibited in the inviscid case. Note, however, 
that the inverse is not always true. As in the case of a collision of two vortex rings, 
the helicity does not always change even if a vortex reconnection causes a change of 
topology of the vortex lines. 

I n  a viscous case, the helicity changes in time according to (7.5). It may increase 
or decrease according as the super-helicity is negative or positive. Notice here the 
minus sign on the right-hand side of (7.5). It means that the skewed structure of the 
vorticity field may work to generate a skewed structure of opposite sense to the 
velocity field. 

7.2. Helicity density in a moving frame 

The helicities and helicity densities introduced in the preceding section are closely 
related to the topological structure of the flow field. The appearance of the velocity 
field is different in a frame moving with a different velocity U, i.e. it is not, Galilean 
invariant (e.g. Levich 1987). Therefore, there must be an appropriate frame in which 
the relation between the helicity density and the skewed structure of the velocity 
field can be recognized most clearly. 

One of the most reasonable coordinate systems may be the one in which the change 
over time of the spatial pattern of the velocity field is minimized. There seems to be 
no definite way to specify it because an actual flow field does more or less change in 
time. Here we propose a practical method to find such a moving system that 
minimizes the integral of the square of helicity density. 

Consider an integral of the square of helicity density in a coordinate system 

(7.8) 
moving with velocity U, 

a whole periodic box. The velocity U which 

[w(x)* (u(x)  - U)12 dx, 

where the integration is 
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FIQURE 29. Perspective views of the iso-surfaces of (a) the helicity and (b) super-helicity densities 
which are seen from directions (i) (2, 1, 5) and (ii) (0, 0, 1) at t = 3 for Case I. Surface levels are 
f50% of the maximum of the helicity magnitude for both helicities. Blacked and hatched regions 
represent positive and negative values, respectively. The helicity density is calculated in a moving 
frame (U,  = 0.673) in which an integral of the square of the helicity density is minimized. 

minimizes the integral I is found by putting the derivative of I with respect to each 
component of U equal to zero, 

a1 
- = Jw,(x) (u,(x) - U3) q(x) dx = 0,  i = 1,2,3. 

3-1 
(7.9) 

Thus, the velocity U satisfies the following simultaneous linear algebraic equations : 

X Aij uj = Bi, (7.10) 
5=1 

3 

A,, = wi(x) w,(x) d x  (7.11) s where 
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FIGURE 30. The same as figure 29 at t = 5, U, = 0.623. 

B, = h,(x) WJX) dx. (7.12) 

In the present case the flow is symmetric with respect to the (xl, x3)-  and the (z2, 
x3)-  planes so that A ,  is a diagonal tensor and B, contains the x,-components only; 
that is, 

I and 

A ,  = Si, w ( ( x ) ~  dx (7.13) s 
Thus, the velocity U is given by 

(7.14) 

(7.15) 

Figures 29 and 30 respectively show the iso-surfaces of the helicity and super- 
helicity densities at  t = 3 and 5 - two typical time instants during the first 
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reconnection for Case I. The helicity density is calculated in a frame moving with 
velocity U given by (7.15). The levels of the iso-surfaces are *50% of the 
instantaneous maximum of helicity density magnitude. The positive parts are 
shaded darker. The helicity density takes negative values in a quadrant x1,x2 > 0 
(see figures 29 and 30a). This suggests that the streamlines are twisted as a left- 
handed screw in this quadrant. The helicity density is antisymmetric with respect to 
both the (xl, x3)- and the (x2, x,)-planes, so the senses of twist of the streamlines are 
opposite in adjacent quadrants. In this symmetric configuration of the flow, 
therefore, the helicity is always zero though the helicity density takes non-zero 
values locally. The four islands along the (x,,x,)-plane at  t = 3 extended out of the 
main vortex tube. This reflects the non-local nature of the velocity field. As seen in 
figure 30(a),  the helicity density is large in threads as well as around bridges at  
t = 5 .  The sign of helicity density in the threads is easily understood by considering 
the direction of rotation of the threads and the expanding flow along the threads. 

The super-helicity density has a similar structure to the helicity density but more 
localized in space. A t  t = 3, it takes negative values in the first and the third 
quadrants xlx2 > 0, and positive in the second and the fourth quadrants x1x2 < 0. 
This suggests that the vorticity lines are twisted as left-handed and right-handed 
screws in the respective quadrants. These senses of twist are consistent with those 
represented schematically in figure 8. At a later time (t = 5 ) ,  the super-helicity 
density exhibits a more complicated structure. It is seen in figure 30 (b) that there are 
regions of large positive and negative super-helicity density in each quadrant in the 
bridges so that the flow field may have a more complicated structure there. 

Now let us make a comment on the helicity density and a lifetime of structures. 
The helicity density has attracted much attention with respect to a nonlinear term 
(o x u )  of the Navier-Stokes equation (2.1), which causes energy to small-scale 
motions. It is argued that this term may be small in regions where helicity density 
is large, for o and u are almost parallel in such regions and thus o x u  is small. 
Furthermore, if the nonlinear interaction term is small, the generation of small scales 
is inhibited and therefore viscous dissipation is also less. Then, we can expect a long- 
lived structure of the flow which may describe the so-called coherent structure. 

This argument, however, seems superficial. First, the magnitudes of o and u are 
not taken into account. We cannot expect that u x o is necessarily large where u . o  
is small simply by considering the relation I c I - w ) ~  + Iu x oI2 = u2w2. It is not applicable 
for a general unsteady flow in which u and w vary in magnitude as well as in their 
relative orientations. Second, i t  is not u x o but V x (U x o) that may deform the 
vorticity field as described by the vorticity equation 

(7.16) 
am -+v x (0 x u )  = V V 2 O .  
at 

In  fact, the vorticity and velocity are almost orthogonal inside the main vortex tube. 
While helicity density is small in the main tube, it is large in the interaction zone. 
Contrary to the above argument, the deformation of the structure is rapid in the 
interaction zone and the structure of the vortex tube is preserved for a long time. 
Third, the nonlinear term on the right-hand side of (2.1), which describes the 
interaction between neighbouring positions, is generally of the same order of 
magnitude as u x w. It certainly contribute to the local change of the velocity field 
though it disappears after integration with respect to space. 

The exclusiveness of domains of high helicity density and high energy dissipation 
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has been discussed by Moffatt (1985) under the assumption that a turbulent flow is 
dominated by steady solutions of the Euler equation bounded by sheets of high 
dissipation. It was conjectured that each steady solution might describe the long- 
lived structure of the coherent motion in turbulence. Several numerical simulations 
of turbulent shear layers (Hussain 1986) demonstrate that there is significant overlap 
of the two domains but their peaks are exclusive. Figure 31 shows four cross-sections 
of helicity density (in a moving frame of minimum I )  and energy-dissipation rate at 
t = 5 for Case I. The positive and negative parts of the helicity density are drawn by 
solid and broken lines, respectively. The contour levels are 20, 40 and 60% of the 
maximum of helicity magnitude. Shaded areas denote high-dissipation regions, in 
which the dissipation rate is larger than 20 YO of the maximum. The positions of these 
four planes are shown in figure 32. These planes are chosen so that they go through 
regions of high vorticity and high helicity, namely, bridges or threads. 

Figures 31 (a )  (x2 = 1OAx) and 31 ( b )  (x2 = 15Ax) show that both the dissipation 
and the helicity are large in bridges, while figures 31 (c) (q = 1.5Ax) and 31 ( d )  (xl = 
5Ax) show that they are high in a thread. Therefore, these two fields are not exclusive 
in the present flow field, but, on the contrary, they overlap substantially in bridges 
and threads. We have confirmed this overlap in other planes also (figures are not 
reproduced here). 
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FIGURE 32. Planes chosen for figure 31. Outlines of the vortex ring (25% of I U & , ~ )  are drawn 
for reference. 

8. Concluding remarks 
The vortex interaction in a collision of two vortex rings has been investigated by 

solving the Navier-Stokes equation numerically. Two identical circular vortex rings 
were set side by side a t  the initial time. It was observed that they undergo two 
reconnections successively as had been visualized experimentally with dye or smoke. 
The overall shapes of the vortex rings are different for different initial conditions, but 
the mechanism of the reconnection is explained by bridging. 

Because of the symmetric configuration for the initial condition, the two vortex 
rings approach in an exactly anti-parallel fashion. The mechanism of the reconnection 
is not a simple cancellation of opposite-signed vorticity but a more complex three- 
dimensional phenomenon, bridging, which is composed of three fundamental 
processes : cancellation of opposite-signed vorticity, transfer of vorticity to 
orthogonal directions and vortex stretching. This mechanism was discovered and 
explained by MH in a simulation of a pair of anti-parallel sinusoidal vortex tubes 
with opposite circulation, except for the prediction of the position of bridges. They 
relate the position of bridges to stagnation points in a frame moving with the 
interacting dipole, but actually bridges are created at the point of maximum vortex 
stretching rate. 

There are several characteristic features of bridging. It occurs when two anti- 
parallel vortex tubes touch each other. Most of the original vorticity is cancelled out, 
and the same amount of circulation appears perpendicularly to the original anti- 
parallel vortex tubes, as bridges. They are created in the front of the interacting 
vortex tubes, or ahead of the direction of the self-advection of the interacting vortex 
tubes near the point of maximum stretching rate. The cancellation of the original 
anti-parallel vortex tubes is not complete, for neighbouring portions of the vortex 
tubes, which are directed perpendicularly to the interacting vortex tubes, together 
with newly created bridges, bend the original tubes in such a way that they move 
away from each other by their self-induction. 

The bridging mechanism manifests itself very clearly in the present simple 
geometry of an interacting vortex pair which are anti-parallel, of equal strength and 
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in a symmetric configuration. It is expected that the vortex reconnection in 
asymmetric configurations, such as a trefoiled vortex ring (Kida & Takaoka 1987) 
and two orthogonal straight vortex tubes (Melander & Zabusky 1988), may have the 
same characteristic feature as that of bridging mentioned above and that the 
bridging may be a main mechanism in the vortex reconnection process for a general 
configuration of the vortex field. In general cases of asymmetric configurations, 
however, much more complicated interactions are expected. For example, if two 
interacting vortices have different circulation, the weaker vortex would wind around 
the stronger one. Viscosity plays an essential role in bridging. It is therefore 
anticipated that the bridging may not occur in the inviscid limit and helicity may be 
invariant in this limit. 

We studied various field quantities. The regions in which energy dissipation is large 
is highly localized in space compared with enstrophy (or vorticity) concentrated 
regions. The kinetic energy of fluid decays according to the same power law as that 
in a fully developed turbulence. This can be understood by noting that energy 
dissipation is dominant in the interaction zone, bridges and threads. It was also 
observed that the enstrophy-production rate takes high values in these regions. This 
is reasonable because both the energy dissipation and the enstrophy production rates 
are determined by the strain rate. 

The helicity and super-helicity densities represent the skewed structure of the 
velocity and vorticity fields, respectively. We note that vorticity is large in the main 
vortex tubes, the form of which is preserved for a relatively long time. On the other 
hand, it is the helicity density that is large in bridges and threads. These shapes 
change rapidly in time. The high-helicity-density and high-energy-dissipation 
.regions overlap significantly though their peaks may be different. We therefore 
conclude that a long-lived structure may carry strong vorticity rather than high 
helicity density. 

The motion of a passive scalar advected by interacting vortex tubes was also 
examined. Stretching of a fluid element dilutes the density of a passive scalar, 
whereas it intensifies the magnitude of vorticity. The concentration of a passive 
scalar does not always mark the magnitude of vorticity even if they sometimes have 
a similar appearance. 

With the resolution (643) of the present numerical simulation the initial Reynolds 
number I ' /v  cannot be higher than about a thousand. We have seen that viscosity 
tends to reduce the curvature of vortex tubes and prolong the reconnection time, 
especially of the second reconnection. We also observed that the amount of remnant 
circulation after the first reconnection increases with the Reynolds number, 
suggesting that the reconnection may not occur in the inviscid limit. Numerical 
simulations with higher resolution are necessary to resolve the Reynolds-number 
dependence of reconnections. 

We studied in this paper the vortex interaction of two identical vortex rings in a 
symmetric configuration. In general, we expect that asymmetric configurations with 
different circulations and different orientations would occur more often. Then we 
expect many interesting phenomena, such as the wrapping of a weaker vortex tube 
around a stronger one and vortex breaking due to the occurrence of three- 
dimensional instabilities. These subjects are left for future studies with simulations 
of higher resolution. 

S. Kida, M .  Takaoka and F .  Hussain 
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